PhD Dissertation:

Integration of SDI Services: an evaluation of a distributed semantic matching framework

Lorenzino Vaccari

April 28, 2009

Lorenzino Vaccari PhD Dissertation: Integration of SDI Services: an evaluation

(ロ) (同) (E) (E) (E)

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work

Interoperability in Spatial Data Infrastructures (SDIs)

- The SDI phenomenon
- Information systems' interoperability
- State of the art
- A P2P semantic matching framework
 - Motivating scenario
 - Supporting the scenario: the OpenKnowledge (OK) system
 - Matching in OK
 - SDI services implementation

3 SPSM Evaluation

- Final evaluation: two experiments
- Evaluation of Structure Preserving Semantic Matching
- Evolution experiment
- Classification experiment
- Performance evaluation
- 4 Conclusions and future work
 - Conclusions
 - Future work

イロン イヨン イヨン イヨン

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work

Interoperability in Spatial Data Infrastructures (SDIs)

- The SDI phenomenon
- Information systems' interoperability
- State of the art
- 2 A P2P semantic matching framework
 - Motivating scenario
 - Supporting the scenario: the OpenKnowledge (OK) system
 - Matching in OK
 - SDI services implementation

SPSM Evaluation

- Final evaluation: two experiments
- Evaluation of Structure Preserving Semantic Matching
- Evolution experiment
- Classification experiment
- Performance evaluation
- 4 Conclusions and future work
 - Conclusions
 - Future work

イロト イポト イヨト イヨト

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work

Interoperability in Spatial Data Infrastructures (SDIs)

- The SDI phenomenon
- Information systems' interoperability
- State of the art
- 2 A P2P semantic matching framework
 - Motivating scenario
 - Supporting the scenario: the OpenKnowledge (OK) system
 - Matching in OK
 - SDI services implementation

3 SPSM Evaluation

- Final evaluation: two experiments
- Evaluation of Structure Preserving Semantic Matching
- Evolution experiment
- Classification experiment
- Performance evaluation
- Conclusions and future work
 - Conclusions
 - Future work

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work

Interoperability in Spatial Data Infrastructures (SDIs)

- The SDI phenomenon
- Information systems' interoperability
- State of the art
- 2 A P2P semantic matching framework
 - Motivating scenario
 - Supporting the scenario: the OpenKnowledge (OK) system
 - Matching in OK
 - SDI services implementation

3 SPSM Evaluation

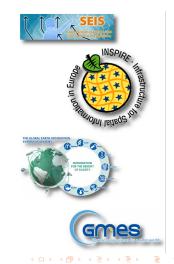
- Final evaluation: two experiments
- Evaluation of Structure Preserving Semantic Matching
- Evolution experiment
- Classification experiment
- Performance evaluation
- Conclusions and future work
 - Conclusions
 - Future work

The SDI phenomenon Information systems' interoperability State of the art

Integration of geo-information

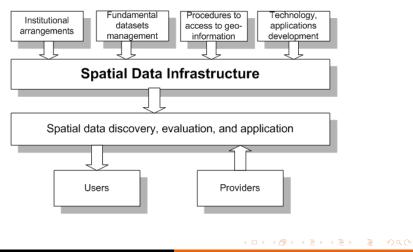
The Digital Earth initiative

- First introduced by AI Gore US vice president in 1998
- Requirements:
 - Computational Science
 - Mass storage
 - Satellite images
 - Broadband networks
 - Metadata
 - Interoperability

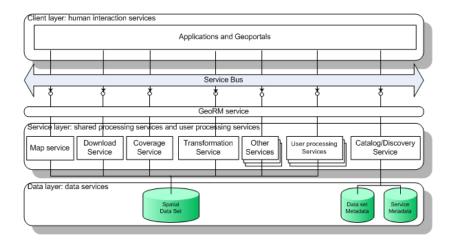


The SDI phenomenon Information systems' interoperability State of the art

Motivation


Initiatives for collection and dissemination of Geographical data

- Shared Environmental Information System (SEIS)
- Infrastructure for Spatial Information in Europe (INSPIRE)
- Global Earth Observation System of Systems (GEOSS)
- Global Monitoring for Environment and Security (GMES)


The SDI phenomenon Information systems' interoperability State of the art

Spatial Data Infrastructure (SDI) components

The SDI phenomenon Information systems' interoperability State of the art

SDI technological implementation

The SDI phenomenon Information systems' interoperability State of the art

Heterogeneity of geo-data

Geo-data heterogeneity

- Different syntax
- Different structure
- Different semantics
- Specifically for geo-data
 - Different precisions, lineage methods ⇒ Integration alignment issues
 - Different topological models of the same Earth's feature
 - Different representation formats (e.g. raster, vectorial)

イロン イヨン イヨン イヨン

The SDI phenomenon Information systems' interoperability State of the art

Geo-service interoperability

Geo - Service Oriented Architecture

- Open Geospatial Consortium specifications
 - Geo-metadata: ISO 19115/ISO19139
 - Geo-Catalog: CAT
 - Geo-Services:
 - Web Map Service (WMS),
 - Web Feature Service (WFS),
 - Gazetteer (WFS-G),

(ロ) (同) (E) (E) (E)

The SDI phenomenon Information systems' interoperability State of the art

Geo-service heterogeneity

Characteristics

- Discovering and integrating services is difficult task
- Usually invocation of a service: described in terms of its structure and data schema specifications
- Formal description of its functionality and the meaning of data are often missing
- Automatic composition: only the syntactical structure of the service can be verified
- Specifically for geo-services
 - Geography based information
 - Maps as implicit interfaces
 - Specific topological operations

3

The SDI phenomenon Information systems' interoperability State of the art

Geo-service semantic heterogeneity

Characteristics

- At present: no standard notions are used for defining the semantics of a geographic web service
- In today's GIS service architectures, the interfaces between agents, computational and human, are those of web services... and...the interface of a service is formally captured by its signature (Kuhn, 2005)
- Signatures (name, inputs and outputs) of web services ⇒ tree-like structures/simple ontologies
- The terms of these tree-like structures implicity contain a classification of the background knowledge of the provider

<ロ> (四) (四) (三) (三) (三)

The SDI phenomenon Information systems' interoperability State of the art

State of the art

Geo-information integration

- Syntactic and structural aspects: Open Geospatial Consortium (OGC) standards
- Semantic aspects:
 - Various approaches use a central ontology to reduce the semantic heterogeneity problem
 - Semantic heterogeneity problem ⇒ problem of reasoning within the shared ontology

Ontology matching

- Techniques from different fields (e.g., statistics and data analysis, machine learning, linguistics)
- In our approach services are assumed to be annotated with the concepts taken from various ontologies

P2P model in GIS application

 P2P model applied to SDIs is very novel: focusses on the ways in which P2P paradigm can be used to support distribution and sharing of spatial information

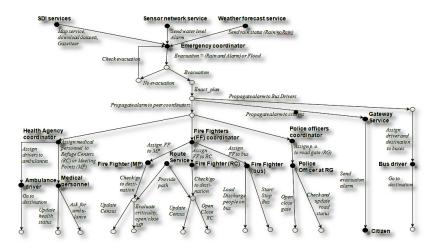
・ロン ・四 と ・ ヨ と ・ ヨ と

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

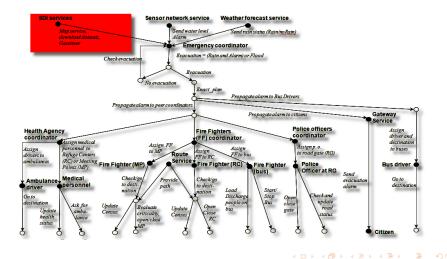
Emergency response (eResponse) scenario

Flooding event in Trento

- eResponse scenario for the flooding in Trento (Italy)
- eResponse Coordination based on the Emergency plan of the municipality of Trento
- Main goal: people evacuation
 - We selected a subset of the operations from the plan: the ones related with the evacuation of the people from potential flooding



Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation


Overall use case

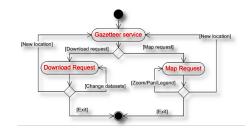
Lorenzino Vaccari PhD Dissertation: Integration of SDI Services: an evaluation

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

Overall use case

Lorenzino Vaccari PhD Dissertation: Integration of SDI Services: an evaluation

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation


SDI services

Gazetteer service

Map request

Download request

Figure: Clustering SDI services

イロン イボン イヨン トヨ

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

OpenKnowledge (OK) EU project

Open, distributed, P2P system

- Interaction-centric approach: peers share Interaction Models (IMs)
- Semantic P2P approach:
 - Distributed storage
 - Decentralized address register
 - Symmetric roles of each peer
 - Semantic matching:
 - Discover and compose peer services
 - Locate shared IMs
- Service choreography mechanism: Lightweight Coordination Calculus (LCC) (Robertson, 2004) language

(ロ) (同) (E) (E) (E)

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

LCC language

LCC characteristics

- Tasks/processes are formalized by Interaction Models (IMs), written in LCC
- IMs written in LCC protocols: workflows
- Uses roles for agents and constraints on message sending to enforce social norms and behaviors

LCC Example

 $\begin{array}{l} \textit{a(r1, A1) ::} \\ \textit{ask}(X) \Rightarrow \textit{a(r2, A2)} \leftarrow \textit{need}(X) \textit{ then} \\ \textit{update}(X) \leftarrow \textit{return}(X) \leftarrow \textit{a(r2, A2)} \end{array}$

 $\begin{array}{l} a(r2, A2) ::\\ ask(X) \Leftarrow a(r1, A1) \ then\\ return(X) \Rightarrow a(r1, A1) \leftarrow get(X) \end{array}$

Figure: Double arrows $(\Rightarrow, \Leftarrow)$ indicate message passing between roles, single arrow (\leftarrow) indicates constraint satisfaction.

<ロ> (四) (四) (注) (注) (三) (三)

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system **Matching in OK** SDI services implementation

How do we use matching in OK?

Different purposes

- To allow peers (service providers) to determine how similar their own service descriptions are to those required by IM constraints (service invocations)
- To allow peers to understand how they may satisfy the requirements of IM constraints. This is done through building up a map between each element of their service descriptions to each element of IM constraints.
- To discover model of interactions (IMs)

(ロ) (同) (E) (E) (E)

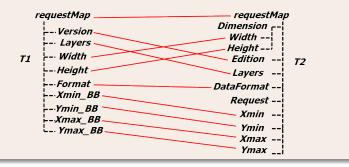
Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system **Matching in OK** SDI services implementation

Matching in OK: LCC Example

LCC Example: Map Provider role

```
a(ga_sp, P) ::
 askMap(Version, Layers, Width,
      Height, Format, XMin_BB
      YMin_BB, XMax_BB, YMax_BB)
      \Leftarrow a(ga_sr, R) then
 returnMap(Map) \Rightarrow a(ga_sr, R)
      \leftarrow requestMap(Version,
          Lavers.
           Width.
           Height.
          Format.
          XMin_BB,
           YMin_BB,
          XMax_BB.
           YMax_BB, Map) then
      a(ga_sp, P)
```

Web service signature


```
public class MapProvider
     extends OKCFacadeImpl{
. . . .
public boolean requestMap{
     Argument
         Dimension(Height,
         Width).
     Argument Edition,
     Argument Layers,
     Argument DataFormat,
     Argument Request,
     Argument Xmin, Ymin,
     Argument Xmax, Ymax,
     Argument Map{
           . . .
```

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system **Matching in OK** SDI services implementation

Which kind of matching solution ?

Structure Preserving Semantic Matching (SPSM) (Giunchiglia et al., 2008)

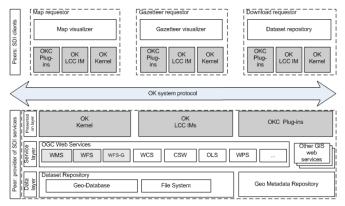
Similarity(T1, T2) = 0.64

(ロ) (部) (注) (注)

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system **Matching in OK** SDI services implementation

SPSM

Based on


- The S-match algorithm
- A formal theory of abstraction (Giunchiglia & Walsh, 1992). The semantic matching preserve some structural properties (e.g., functions are matched to functions and variables are matched to variables)
- A tree edit-distance algorithm

$$TreeSim(T1, T2) = 1 - \frac{min\sum_{i \in S} n_i \cdot Cost_i}{max(|T1|, |T2|)}$$
(1)

・ロン ・回 と ・ ヨン ・ ヨン

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

SDI services implementation architecture

OGC = Open Geospatial Consortium

WMS = Web Map Services

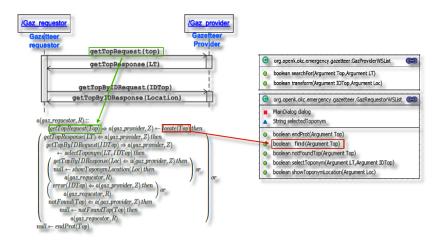
WFS = Web Feature services

WCS = Web coverage (raster) services

CSW = Catalog Services for Web

OLS = Open Location Services

WPS = Web Processing Services


WFS-G = Gazeteer service

OK = OpenKnowledge IM = Interaction models

LCC = Lightweight Coordination Calculus

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

Gazetteer service

Interoperability in Spatial Data Infrastructures (SDIs)

A P2P semantic matching framework

SPSM Evaluation

Conclusions and future work

Motivating scenario Supporting the scenario: the OpenKnowledge (OK) system Matching in OK SDI services implementation

The emergency GUI

Lorenzino Vaccari

PhD Dissertation: Integration of SDI Services: an evaluation

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Experiments

Evolution experiment

- How robust is SPSM when ontologies evolve ?
- Syntactic and semantic alteration operations on real world GIS Web service operation signatures
- The probability, assigned to each alteration operation, has been changed from the lower value (0.1) to the maximum value (0.9)

Classification experiment

- Does SPSM retrieve similar web services ?
- Comparison between a manual classification and the one computed by SPSM

イロン イヨン イヨン イヨン

Final evaluation: two experiment Evolution experiment Classification experiment Performance evaluation

Evolution experiment: syntactic and semantic alterations

Evaluation setup: dataset

- 80 trees were built out of the ESRI Geographic web services
- 4 alteration operations + 1 combination: Meaning and syntactic alterations
- 20 alterations for each tree, for each alteration operation and for each probability
 - total matching tasks (including 10 statistical repetitions): ca. 700.000

イロン イヨン イヨン イヨン

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation setup: alteration operations

Original signature

find_Address_By_Point(point, address_Finder_Options, part)

- Replace a node name with an unrelated one (Brown corpus) : point → cable
- Add or remove a label in a node name (Brown corpus): find_Address_By_Point → find_By_Point
- O Alter syntactically a label (add, delete and change characters): find_Address_By_Point → finm_Address_By_Poioat
- Q Replace a label in a node name with a related one (synonyms, hyponyms, hypernyms from Moby and WordNet 3.0): address_Finder_Options → location_Finder_Options
- Ocombination of 3. and 4.:

 $address_Finder_Options \rightarrow \textit{Ifctin}_Finder_Options$

(ロ) (同) (E) (E) (E)

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation methodology

Modify(AlterationOperation, AlterationProbability, Signature):

 $\begin{array}{l} ExpScore \leftarrow 1 \\ AltSignature \leftarrow Change(AlterationOperation, AlterationProbability, Signature) \\ ExpScore \leftarrow Decrease(ExpScore, AlterationOperation, AlterationProbability) \\ return ExpScore, AltSignature \end{array}$

Recall, precision and F-measure quality measures computation. Ingredients:

- Expected Score: *ExpScore*
- User threshod: CorrThresh
- SPSM similarity value: TreeSim
- Variable acceptance (cut-off) threshold: CutoffThresh
- Results: average on 10 repetitions

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

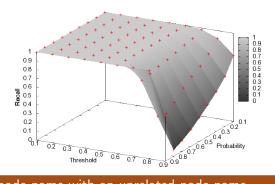
Evaluation methodology: quality measures

Quality measures

- $R = \{T2 \in AltSignatures \mid TreeSim(T1, T2) \geq CutoffThresh\}$
- $C = \{T2 \in AltSignatures | ExpScore(T1, T2) \geq CorrThresh\}$
- $TP = \{T2 \mid T2 \in R \land T2 \in C\}$
- $FP = \{T2 \mid T2 \in R \land T2 \notin C\}$

$\frac{1}{2} = 0.0, \frac{1}{2} = 0.0, \frac{1}$								
Cut-off threshold	C	R	<i>TP</i>	FP	FN	Recall	Precision	F-measure
0.1	593	1598	593	1005	0	1.000	0.371	0.541
0.2	593	1585	593	992	0	1.000	0.374	0.545
0.3	593	1568	593	975	0	1.000	0.378	0.549
0.4	593	1496	593	903	0	1.000	0.396	0.568
0.5	593	1391	593	798	0	1.000	0.426	0.598
0.6	593	758	588	170	5	0.992	0.776	0.871
0.7	593	642	513	129	80	0.865	0.799	0.831
0.8	593	397	315	82	278	0.531	0.794	0.636
0.9	593	143	112	31	481	0.189	0.783	0.304
			•			· · · · · · · · · · · · · · · · · · ·		'국 문 제 국 문 제

Table: Example (*CorrThresh* = 0.6, *AlterationProbability* = 0.7).

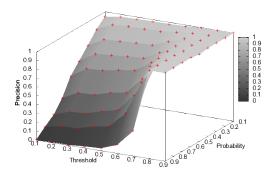

Lorenzino Vaccari

PhD Dissertation: Integration of SDI Services: an evaluation

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results: recall

Replace a label with an unrelated label

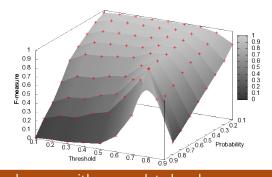

Replace a node name with an unrelated node name

The SPSM approach retrieves all the expected (relevant) correspondences until the empirically fixed threshold (*corrThresh* = 0.6), that mimics the user's tolerance to errors, is reached

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results: precision

Replace a label with an unrelated label


Replace a node name with an unrelated node name

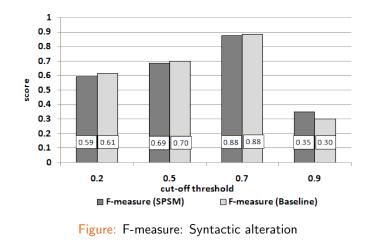
Precision improves rapidly as the *TreeSim* cut-off threshold exceeds the empirically fixed threshold. Precision decreases steadily as a function of the alterations' probability while the *TreeSim* cut-off threshold is below the empirically fixed threshold

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results: F-measure

Replace a label with an unrelated label

Replace a node name with an unrelated node name


Even when the probability of the alteration is very high the balance between correctness and completeness is good. For instance, at the optimal *TreeSim* cut-off threshold (0.6), for an important alteration probability of 80%, F-measure is higher than 74%. These data prove the robustness of the SPSM approach up to significant syntactic modifications in the node names.

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation

Conclusions and future work

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results: SPSM vs. Baseline

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation

Conclusions and future work

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results: SPSM vs. Baseline

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results

Alteration operations

 Robustness of the SPSM algorithm over significant ranges of parameters' variation (different alteration operations, alteration operations' probabilities, and cut-off threshold) was good and SPSM maintained a relatively high (over 60%) F-measure

SPSM vs. Baseline

- F-measure comparison
- Equivalent for syntactic alteration
- \bullet > 20% for meaning alteration
- \Rightarrow SPSM matcher: best of both worlds

・ロト ・回ト ・ヨト ・ヨト

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Classification experiment

Evaluation setup: dataset

- Selected set (50) of GIS Web service operations from the previous dataset
 - Manual classification of the initial set of operations (WSDL files)
 - Deletion of some general (valid for all the groups) operations
 - Refinement of the classification by logically regrouping some operations

Outline Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation

Conclusions and future work

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation methodology: example

Methodology

- $R = \{(Op_i, Op_j) \in OP^2 | TreeSim(Op_i, Op_j) \ge cutoffThresh\}$
- $C = \{(Op_i, Op_j) \in OP^2 | (Op_i, Op_j) \in RefAlign\}$
- $TP = \{(Op_i, Op_j) | (Op_i, Op_j) \in R \land (Op_i, Op_j) \in C\}$
- $FP = \{(Op_i, Op_j) | (Op_i, Op_j) \in R \land (Op_i, Op_j) \notin C\}$
- $FN = \{(Op_i, Op_j) | (Op_i, Op_j) \in C \land (Op_i, Op_j) \notin R\}$

Table: Manual classific.

	Op ₁	Op ₂	Op ₃	Op ₄
Op ₁	1	1	1	0
Op ₂	1	1	1	0
Ор ₂ Ор ₃	1	1	1	0
Op ₄	0	0	0	1

In our example

- cutoffThresh = 0.5
- $\bigcirc |C| = |TP| \cup |FN| = 10$
- $|R| = |TP| \cup |FP| = 12$
- |*TP*| = 8
- |*FN*| = 2
- |*FP*| = 4
- Recall = |TP|/|C| = 0.8

Table: SPSM classification

	Op ₁	Op ₂	Op ₃	Op ₄
Op ₁	1	0.76	0.22	0.52
Op ₂	0.76	1	0.57	0.54
Op ₃	0.22	0.57	1	0.12
Op ₄	0.52	0.54	0.12	1

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Evaluation results

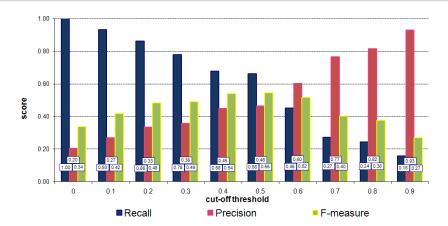


Figure: Classification results: best F-measure: 52%

<ロ> (四) (四) (注) (注) (三) (三)

Final evaluation: two experiments Evolution experiment Classification experiment Performance evaluation

Performance evaluation

More than 700.000 matching tasks

- Setup: standard laptop Intel Centrino Core Duo CPU-2Ghz, 2GB RAM, Windows Vista O.S., no applications running but a single matching system.
- Average numbers of the parameters of the WSDL operations: 4
- Efficiency: execution time per matching task: 43 ms
- Quantity of main memory during matching tasks: less than 2.3Mb (than the standby level)
- SPSM could be employed to find and integrate similar web service implementations at runtime

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusions Future work

Conclusions

Summary

- State of the art of interoperability among distributed and heterogeneous SDIs
- OK system application to a distributed SDI scenario
- SPSM approach evaluation with important results:
 - Evolution experiment: > 20% in comparison to the baseline
 - Classification experiment: best F-measure around 52%
 - Performance: SPSM is robust and can be used at run-time

Application scenarios: ontologies evolve !

- Geo Web service discovery
- Geo Web service composition
- Geo-sensor networks

Conclusions Future work

Future work

Application and evaluation

- Geo-catalog of the Autonomous Province of Trento
- Geo-sensor networks in a real world emergency scenario
- Extensive evaluation on different kinds of geo-services (e.g., GRASS package)
- Geo-data similarity evaluation (e.g. INSPIRE themes)

Extending the SPSM solution

- Incorporating domain specific preferences
- Use domain specific (GIS) and/or multilingual thesauri, e.g. Gemet, Agrovoc and Eurovoc for semantic matching
- Extension of SPSM to perform spatial matching

・ロン ・回と ・ヨン ・ヨン

3

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work Thank you for your attention !

QUESTIONS ?

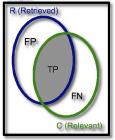
This work has been supported by:

- The University of Trento (http://www.unitn.it)
- The EU project OpenKnowledge (http://www.openk.org)
- The Autonomous Province of Trento (http://www.provincia.tn.it)

(ロ) (同) (E) (E) (E)

Interoperability in Spatial Data Infrastructures (SDIs) A P2P semantic matching framework SPSM Evaluation Conclusions and future work

Conclusions Future work


Evaluation measures

Definitions

- TP: True positives
- FP: False positives
- FN: False negatives
- Relevant: $C = TP \cup FN$
- Retrieved: $R = TP \cup FP$

Quality measures

Corpus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で